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Abstract--We consider creeping flow through a cubic array of identical spherical bubbles and compute the 
drag force exerted on a representative bubble in the array using a method originally emvloyad by Hasimoto 
(1959) and recently modified by Sangani & Acrivos (1982). In addition to deriving analytic expressions for 
the drag to 0(cZ), we present numerical results for the complete range of bubble volume fractions c for the 
three cubic arrays. 

Dispersions of gases in liquids are widely employed in chemical reactors and it is often 
desirable to estimate the terminal velocity of a swarm of gas bubbles rising through a pool of 
liquid. This terminal velocity will in general depend on several variables, for example, the 
Reynolds number or the geometry, size and size distribution of the bubbles, so that no general 
theory seems possible. To date most theoretical studies on the subject have been restricted to 
the case of isolated bubbles rising in a fluid at rest except for the analysis of Wachholder (1973) 
and of Haber & Hetsroni (1981) who gave expressions for the 0(c) correction to the sedimen- 
tation velocity of a dilute emulsion of spherical drops, c being the volume fraction of the 
dispersed phase. 

In order to determine the effect of particle-particle interactions at higher concentrations, we 
consider here the idealized case of an infinite periodic array of equal-sized bubbles of radius a* 
rising through an incompressible Newtonian fluid of viscosity ~. under conditions where the 
particle Reynolds number is sufficiently small so that the fluid motion satisfies the well known 
creeping flow equations. Since the array is assumed to remain periodic, the problem is 
equivalent to that of determining the force F exerted by the fluid moving with an average speed 
U on a representative bubble in an array of bubbles whose centers are fixed at positions given 
by 

ro = h(nla~) + n~a~2) + n3ac3)) (n~, n2, n3 ffi O, +-I, +-2,...), [1] 

where a~l), a~2) and ao) are the basic vectors of the array and h is the characteristic dimension 
for the unit cell of the periodic array. Finally we assume that the viscous forces are much 
smaller compared to the forces due to the surface tension (i.e. ~UI7 "~ 1) so that the bubbles 
remain spherical. Although the problem to be studied is quite artificial, it is hoped that its 
solution will offer valuable insight into the behavior of the physically realistic systems 
encountered in practice. 

Recently, the present authors (1982) (henceforth referred to as D calculated the force 
exerted by the fluid on the cubic arrays (simple, body-centered, and face-centered) of hard 
spheres using a modification of the method originally developed by Hasimoto (1959). In the 
present note this modified method will be applied to the case of cubic arrays of spherical 
bubbles. 

As shown in I, the components of the velocity (non-dimensionalized by U) of the fluid are 
given by (the mean flow being in the xrdirection) 

ul=l+2Bo0 1 [,~/o 82S2~...82S I . /  a 4 ~ b 4 _ 0 4 \ o l  [2] 
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= 1...1_1" G a2S2 _ .  0281 . a [ 03 . a3 ~1o 
[3] 

1 ~'#-i 02S2 rT 02SI ~ .  0 [ 03 ,.~ 03 ~ [4] 

where the periodic functions S~ and Sz defined by Hasimoto (1959) have the following 
expansions in spherical harmonics near r = 0: 

S l = ! _ c + 2 1 r  ,. ¢_ ,,~2 a,,.Ye. (XI, X2, X3) r 31"o r ~'~2J 2 ~ 4. 
.~0 

[5] 

S r --  c 2. Irr4. ~ ' ~ m  . 4m 
z=~-cz-~r + 3--~Vo + 2.j2 2~= ° (~, +a,~,r~Y2,(xm, x2,x3) [6] 

with 

Y.'(x~, x., x3) = r"P.'(cos 0) cos m~, [7] 

xl = r cos 0, xz = r sin 0 cos ~, x3 = r sin ~b sin ~b. [8] 

Here ~, ~z, ~o, b~.,, a . .  and d . .  are constants characteristic of the array. Their values for the 
simple, body-centered and face-centered cubic arrays have been reported in I. Also as defined in 
I, 

13] ®m~ln)ulA,,,,,lf c~z. [ [0.~4.  O 4,,, 
[9] 

with 

---- X 2 "1"/X3, ~ -~- X 2 --/X3, 

and where the unknown coefficients A.,., Bin, and C.,. are to be determined by applying the 
boundary conditions described below. 

The velocity components given by[2]-[4] automatically satisfy the periodic and cubic 
symmetry conditions (for the details of these boundary conditions the reader is referred to D 
and therefore it remains to satisfy only the boundary conditions on the surface of any one 
bubble, specifically the one whose center coincides with the origin. Thus the boundary 
conditions at r = a( = a*/h) are that the normal component of the velocity and the tangential 
stresses are zero. In order to implement these boundary conditions for the purpose of 
determining the unknown coefficients in [9] we proceed as follows: 

First of all, on substituting [5]-[9] into [2]--[4] we obtain 

® m ' . ~ n / 2  

.1: O) oos 4,,,4,, [10] 

® m- .~n/2  

u2 = ~ t  ~ 0  ~2nm(r)P~n~-t(cos O) cos(4m - l)~b + f3.m(r)P~+1(cos O) cos(4m + I)~}, 

(.fz~o'0, f3m---0 if n=2m) [II] 
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m~nl2 

u3 = ~l ,~'-o {- f2,m(r)P 24~-I(cos O) sin(4m - 1)~ + f3,m(r)P 4~+l(cos O) cos(4m + 1)~} 
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(12) 

where the functions fl.m(r) (i = 1, 2, 3) can be calculated as in I. Thus, for example, 

1 1 ~ ' 4 1 1  - 21r 3 f,oo = - ~ L ~ L  - or + y~o r ] A o o -  16~_  - ~ o  ~oo 

16~r r 2 + 

1 1 Ir 2 4 4 = b~a)r+~a2or]Aoo+2[~-8r2a2o]Boo ,,,o 

, , ,  

Next, on applying the boundary conditions and using various recursion relations among the 
spherical harmonics together with the orthogonality of these functions, we arrive at the 
following set of linear equations: 

( 4 n  + 1) t (2n +4m)flm +(4n + 1)(2n - 4 m  - 1)fl ,-t.m +a2~ - (4n  3) J2"n-I'm 
(4n - 3) • 

(4n + 1)(2n - 2 - 4m)(2 n - 1 - 4 m ) f3.,-i.~ ] = 0 (2n + 4m)(2n + 4m + 1)f3.m + [15] 
(4n - 3) J,= a 

4 n + l .  . .  

+ (4n + IX2n - I - 4mX2n - 2 - 4m)f3,._i," } = 0 [16] 
(4n - 3) ,=a 

(i-ad){fi.m_4n+I3fi,._,, - + 1 , + (4n + l)(2n-4m) 
4n - (2n + 4mJ 2"~ (4n - 3)(2n + 4m)(2n + 4m - I/2'"-I'" ~ 

- (2n + 4m + l)fsm - (4n + l)(2n - 4m - 2)f 3 .-i,m } = 0 n -> 2m + I [17] 
(4n - 3) " ,-a 

(l-ad){4nfi.m + f2.m},.a=O, n= 2m. [18] 

The above set of infinite equations can be truncated to a finite set with an equal number of 

unknowns and the resulting equations can be solved in either of two ways (D. The first is a 
method of successive approximations which generates a series expansion in powers of a for 

each unknown while the second is a method of direct substitution in which the unknowns are 

determined by matrix inversion for a given value of a. Thus the method of successive 

approximation yields the expression for F: 

F f 1 2 32'n "2 2 6 - I  Kb = 41rp--U"~ = L -~.a+('4--~To -24062o)a +O(aS)] . [19] 
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where use has been made of the relationship 

F = 2Aoo~Uh. [20] 

In terms of the volume fraction c of the bubbles [19] can be rewritten as 

! - 1.1734c ,/3 _ 0.1178c 2 + 0(c 8/3) 
1.1946C '/3 + 0.3508C 2 + 0(C 8/3) 

K ~  1 = - 1 . 1 9 4 5 c l / 3 + 0 . 3 6 1 1 c 2 + 0 ( c S / 3  ) 

(sc) 1 
(Bcc) I 
(FCC) 1 

[21] 

We note that the coefficient of a in (19) is exactly 2/3 times the corresponding coefficient in 
the expression for the force on a cubic array of hard spheres (see [47] in I). This is to be 
expected from the method of reflections owing to the fact that the force on an isolated bubble is 
2/3 times the force on an isolated hard sphere of the same radius, the viscosity and the velocity 
of the fluid at infinity being the same in each case. 

The convergence-tested results obtained by employing the direct substitution method are 
given in table 1 in terms of a parameter X defined by 

C ~1/3 

X \crux/ [22] 

where Cm~x is the maximum volume fraction, i.e. the volume fraction of the bubbles when they 
are touching each other, whose value equals ~r/6 = 0.5236, V'~I8 = 0.6802, and X/~ /6  = 

0.7405, respectively for a simple, body-centered and face-centered cubic array. We see that 
these numerical results agree with[21] to within 5% for X < 0.6 for all the three cubic arrays. It 
is interesting to note that the ratio of the force experienced by a bubble in a closed packed 
configuration (X = 1) to that on an isolated bubble ~ = O) equals 12.8, 28.7, and 59, respectively, 
for a simple, body-centered, and face-centered cubic array, the corresponding values for the 
hard spheres being 42.1,162.3, and 435. 

Table I. The dimensionless drag K~ for three cubic arrays 

x ~ ( s c )  r,.b(8CC) 
O. 1 1.104 1.117 

0.2 1.233 1.266 

0.3 1.396 1.460 

0.4 1.609 1.724 

0.5 1.898 2.101 

0.6 2.315 2.678 

0.7 2.967 3.650 

0.8 4.11 5.54 

0.85 5.06 7.29 

0.9 6.51 10.26 

0.95 8.84 15.99 

0.97 10.18 19.86 

0.99 11.8 25.3 

1.0 12.8 28.7 

Kb(ZCC) 

1.121 

1.276 

1.480 

1.760 

2.168 

2.808 

3°927 

6.26 

8.59 

13.01 

23.34 

31.95 

47.0 

59.0 
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